हिंदी

The Product (32), (32)1/6 (32)1/36 ... to ∞ is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 

विकल्प

  • (a) 64

  • (b) 16 

  • (c) 32 

  • (d) 0 

MCQ

उत्तर

(a) 64 

\[32 \times {32}^\frac{1}{6} \times {32}^\frac{1}{36} \times . . . \infty \]
\[ = {32}^\left( 1 + \frac{1}{6} + \frac{1}{36} + . . . \infty \right) \]
\[ = {32}^\left( \frac{1}{1 - \frac{1}{6}} \right) [\because \text{ it is a G . P } . ]\]
\[ = {32}^\left( \frac{6}{5} \right) \]
\[ = \left( 2^5 \right)^\left( \frac{6}{5} \right) \]
\[ = 2^6 \]
\[ = 64\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.8 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.8 | Q 22 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.


If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


Find the 4th term from the end of the G.P.

\[\frac{2}{27}, \frac{2}{9}, \frac{2}{3}, . . . , 162\]

Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?


Which term of the G.P. :

\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]


If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.


Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c, d are in G.P., prove that:

(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


If the first term of a G.P. a1a2a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is


If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


Mark the correct alternative in the following question: 

Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to 


For the G.P. if a = `2/3`, t6 = 162, find r.


Select the correct answer from the given alternative.

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –


Select the correct answer from the given alternative.

If common ratio of the G.P is 5, 5th term is 1875, the first term is -


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×