हिंदी

Select the correct answer from the given alternative. The tenth term of the geometric sequence 14,-12,1,-2, ... is – - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Select the correct answer from the given alternative.

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –

विकल्प

  • 1024

  • `1/1024`

  • – 128

  • `(-1)/28`

MCQ

उत्तर

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is – 128

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Miscellaneous Exercise 2.1 [पृष्ठ ४०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Miscellaneous Exercise 2.1 | Q I. (2) | पृष्ठ ४०

संबंधित प्रश्न

Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


Given a G.P. with a = 729 and 7th term 64, determine S7.


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]


The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


Find the sum :

\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]


Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.


If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.


Express the recurring decimal 0.125125125 ... as a rational number.


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.


If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.


If logxa, ax/2 and logb x are in G.P., then write the value of x.


If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.


If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


The two geometric means between the numbers 1 and 64 are 


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`


Express the following recurring decimal as a rational number:

`51.0bar(2)`


If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term


Find GM of two positive numbers whose A.M. and H.M. are 75 and 48


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


The third term of a G.P. is 4, the product of the first five terms is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×