Advertisements
Advertisements
प्रश्न
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
उत्तर
Sn = 2(3n – 1)
∴ Sn–1 = 2(3n–1 – 1)
But tn = Sn – Sn–1
= 2(3n – 1) – 2(3n–1 – 1)
= 2(3n – 1 – 3n–1 + 1)
= 2(3n – 3n–1)
= 2(3n–1+1 – 3n–1)
∴ tn = 2.3n–1 (3 – 1) = 4.3n–1
∴ tn–1 = `4.3^(("n"– 1) –1)` = 4.3n–2
The sequence (tn) is a G. P.,
If `"t"_"n"/"t"_("n"-1)` = constant
for all n ∈ N
∴ `"t"_"n"/"t"_("n" - 1) = (4.3^("n" - 1))/(4.3^("n" - 2))`
= `3^("n" - 1)/(3^("n" - 1)*3^((-1))`
= 3
= constant for all n ∈ N
∴ r = 3
∴ the sequence is a G.P. with tn = 4.3n–1
APPEARS IN
संबंधित प्रश्न
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn
Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
Find the sum of the following geometric progression:
4, 2, 1, 1/2 ... to 10 terms.
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
Find the rational numbers having the following decimal expansion:
\[0 . 6\overline8\]
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If a, b, c are in G.P., prove that the following is also in G.P.:
a2 + b2, ab + bc, b2 + c2
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
If A1, A2 be two AM's and G1, G2 be two GM's between a and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
The fractional value of 2.357 is
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
For the G.P. if r = − 3 and t6 = 1701, find a.
For the G.P. if a = `2/3`, t6 = 162, find r.
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
For the following G.P.s, find Sn
3, 6, 12, 24, ...
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
Answer the following:
If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.
If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1
The third term of a G.P. is 4, the product of the first five terms is ______.