हिंदी

If X = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the Value of X is - Mathematics

Advertisements
Advertisements

प्रश्न

If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 

विकल्प

  • (a) 7 

  • (b) 8 

  • (c) 9 

  • (d) 10 

MCQ

उत्तर

(b) 8 

\[\left( 4^3 \right)\left( 4^6 \right)\left( 4^9 \right)\left( 4^{12} \right) . . . \left( 4^{3x} \right) = \left( 0 . 0625 \right)^{- 54} \]
\[ \Rightarrow 4^\left( 3 + 6 + 9 + 12 + . . . + 3x \right) = \left( \frac{625}{10000} \right)^{- 54} \]
\[ \Rightarrow 4^{3\left( 1 + 2 + 3 + 4 + . . . + x \right)} = \left( \frac{1}{16} \right)^{- 54} \]
\[ \Rightarrow 4^{3\left( \frac{x\left( x + 1 \right)}{2} \right)} = \left( \frac{1}{16} \right)^{- 54} \]
\[ \Rightarrow 4^{3\left( \frac{x\left( x + 1 \right)}{2} \right)} = \left( 4^{- 2} \right)^{- 54} \]
\[\text{ Comparing both the sides }: \]
\[ \Rightarrow 3\left( \frac{x\left( x + 1 \right)}{2} \right) = 108\]
\[ \Rightarrow x\left( x + 1 \right) = 72\]
\[ \Rightarrow x^2 + x - 72 = 0\]
\[ \Rightarrow x^2 + 9x - 8x - 72 = 0\]
\[ \Rightarrow x\left( x + 9 \right) - 8\left( x + 9 \right) = 0\]
\[ \Rightarrow \left( x + 9 \right)\left( x - 8 \right) = 0\]
\[ \Rightarrow x = 8, - 9\]
\[ \Rightarrow x = 8 [ \because \text{ x is positive }]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.8 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.8 | Q 18 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Find the 4th term from the end of the G.P.

\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


Find the sum :

\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


Find the rational number whose decimal expansion is \[0 . 423\].


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


If a, b, c, d are in G.P., prove that:

(b + c) (b + d) = (c + a) (c + d)


If a, b, c are in G.P., prove that the following is also in G.P.:

a2, b2, c2


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


Find the geometric means of the following pairs of number:

a3b and ab3


The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


Write the product of n geometric means between two numbers a and b

 


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to


Check whether the following sequence is G.P. If so, write tn.

1, –5, 25, –125 …


The numbers 3, x, and x + 6 form are in G.P. Find x


If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Select the correct answer from the given alternative.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)


Answer the following:

In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term


Answer the following:

Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`


Answer the following:

For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×