हिंदी

Find the Sum of the Following Serie: 5 + 55 + 555 + ... to N Terms; - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;

उत्तर

We have,
5 + 55 + 555+ ... n terms
Taking 5 as common:

\[S_n\] = 5[1 + 11 + 111 + ... n terms]

\[= \frac{5}{9}\left( 9 + 99 + 999 + . . . \text { n terms } \right)\]

\[ = \frac{5}{9}\left\{ \left( 10 - 1 \right) + \left( {10}^2 - 1 \right) + \left( {10}^3 - 1 \right) + . . . + \left( {10}^n - 1 \right) \right\}\]

\[ = \frac{5}{9}\left\{ \left( 10 + {10}^2 + {10}^3 + . . . + {10}^n \right) \right\} - \left( 1 + 1 + 1 + 1 + . . .\text {  n times }  \right)\]

\[ = \frac{5}{9}\left\{ 10 \times \frac{\left( {10}^n - 1 \right)}{10 - 1} - n \right\} \]

\[ = \frac{5}{9} \left\{ \frac{10}{9}\left( {10}^n - 1 \right) - n \right\}\]

\[ = \frac{5}{81}\left\{ {10}^{n + 1} - 9n - 10 \right\}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.3 | Q 4.1 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


Evaluate `sum_(k=1)^11 (2+3^k )`


The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


Find the sum of the following series to infinity:

10 − 9 + 8.1 − 7.29 + ... ∞


The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]


Find the geometric means of the following pairs of number:

2 and 8


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


If the first term of a G.P. a1a2a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


The nth term of a G.P. is 128 and the sum of its n terms  is 225. If its common ratio is 2, then its first term is


If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 


For the G.P. if a = `2/3`, t6 = 162, find r.


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


The numbers x − 6, 2x and x2 are in G.P. Find nth term


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Select the correct answer from the given alternative.

If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?


Select the correct answer from the given alternative.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×