Advertisements
Advertisements
प्रश्न
If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is
विकल्प
1/10
1/11
1/9.
1/20
उत्तर
\[\frac{1}{11}\]
Let the first term of the G.P. be a.
Let its common ratio be r.
According to the question, we have:
First term = 10 [Sum of all successive terms]
\[a = 10\left( \frac{ar}{1 - r} \right)\]
\[ \Rightarrow a - ar = 10ar\]
\[ \Rightarrow 11ar = a\]
\[ \Rightarrow r = \frac{a}{11a} = \frac{1}{11}\]
APPEARS IN
संबंधित प्रश्न
Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
For what values of x, the numbers `-2/7, x, -7/2` are in G.P?
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
Find the sum of the following series:
0.5 + 0.55 + 0.555 + ... to n terms.
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
Find the rational number whose decimal expansion is \[0 . 423\].
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If a, b, c, d are in G.P., prove that:
(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
The numbers x − 6, 2x and x2 are in G.P. Find nth term
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`-3, 1, (-1)/3, 1/9, ...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.