हिंदी

Show that One of the Following Progression is a G.P. Also, Find the Common Ratio in Case: 4, −2, 1, −1/2, ... - Mathematics

Advertisements
Advertisements

प्रश्न

Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...

उत्तर

We have,

\[ a_1 = 4, a_2 = - 2, a_3 = 1, a_4 = - \frac{1}{2}\]

\[\text { Now }, \frac{a_2}{a_1} = \frac{- 2}{4} = \frac{- 1}{2}, \frac{a_3}{a_2} = \frac{1}{- 2}, \frac{a_4}{a_3} = \frac{- \frac{1}{2}}{1} = \frac{- 1}{2}\]

\[ \therefore \frac{a_2}{a_1} = \frac{a_3}{a_2} = \frac{a_4}{a_3} = \frac{- 1}{2}\]

\[\text { Thus, } a_1 , a_2 , a_3 \text { and } a_4\text {  are in G . P . , where a = 4 and }r = \frac{- 1}{2} .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.1 | Q 1.1 | पृष्ठ ९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Find the sum of the following serie to infinity:

\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]


Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.


If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


The two geometric means between the numbers 1 and 64 are 


For the G.P. if r = `1/3`, a = 9 find t7


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


The numbers 3, x, and x + 6 form are in G.P. Find nth term


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.


The numbers x − 6, 2x and x2 are in G.P. Find nth term


For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...


For a G.P. if a = 2, r = 3, Sn = 242 find n


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


Find : `sum_("n" = 1)^oo 0.4^"n"`


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


Answer the following:

In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


Answer the following:

If for a G.P. first term is (27)2 and seventh term is (8)2, find S8 


Answer the following:

Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.


Answer the following:

If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2   


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×