हिंदी

The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm. - Mathematics

Advertisements
Advertisements

प्रश्न

The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.

योग

उत्तर

Let the first term of the geometric progression, a = –3

And common ratio = r

4th term = ar4 – 1 = ar3 = –3r3

Second term = ar = –3r

Given: 4th term = (second term)2

⇒ –3r3 = (−3r)2 

= 9r2

r = –3

7th term = ar7−1 = ar6

= (−3)(−3)6

= (−3)7

= −2187

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Exercise 9.3 [पृष्ठ १९२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Exercise 9.3 | Q 4 | पृष्ठ १९२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`


Insert two numbers between 3 and 81 so that the resulting sequence is G.P.


Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]


The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c are in G.P., prove that:

(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


If logxa, ax/2 and logb x are in G.P., then write the value of x.


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


Check whether the following sequence is G.P. If so, write tn.

`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


For the G.P. if a = `7/243`, r = 3 find t6.


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


The numbers x − 6, 2x and x2 are in G.P. Find x


For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...


For a G.P. if a = 2, r = 3, Sn = 242 find n


The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`


If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


Answer the following:

Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.


If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×