हिंदी

Which term of the following sequence: 2,22,4,....is128 - Mathematics

Advertisements
Advertisements

प्रश्न

Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`

योग

उत्तर

The given sequence is `2,2sqrt2, 4 ....`

Here, a = 2 and r = `(2sqrt2)/2 = sqrt2`

Let the nth term of the given sequence be 128.

an = arn - 1

= `2(sqrt2)^("n" - 1) = 128`

= `(2) (2)^((n - 1)/2) = (2)^7`

= `(2)^((n - 1)/2 + 1) = (2)^7`

∴ `("n" - 1)/2 = 6`

= n - 1 = 12

= n = 13

Thus, the 13th term of the given sequence is 128.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Exercise 9.3 [पृष्ठ १९२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Exercise 9.3 | Q 5.1 | पृष्ठ १९२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?

 

Find the 4th term from the end of the G.P.

\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


Find three numbers in G.P. whose sum is 65 and whose product is 3375.


The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.


Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c, d are in G.P., prove that:

(b + c) (b + d) = (c + a) (c + d)


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


For the G.P. if a = `2/3`, t6 = 162, find r.


For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

9, 8.1, 7.29, ...


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


Answer the following:

Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×