Advertisements
Advertisements
प्रश्न
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
उत्तर
Let the terms of the given G.P. be \[\frac{a}{r}, \text { a and ar }\]
∴ Product = 216
\[\Rightarrow a^3 = 216\]
\[ \Rightarrow a = 6\]
It is given that \[\frac{a}{r} + 2, a + 8 \text { and ar } + 6\] are in A.P.
\[\therefore 2\left( a + 8 \right) = \frac{a}{r} + 2 + ar + 6\]
\[\text { Putting a = 6, we get }\]
\[ \Rightarrow 28 = \frac{6}{r} + 2 + 6r + 6\]
\[ \Rightarrow 28r = 6 r^2 + 8r + 6\]
\[ \Rightarrow 6 r^2 - 20r + 6 = 0\]
\[ \Rightarrow \left( 6r - 2 \right)\left( r - 3 \right) = 0\]
\[ \Rightarrow r = \frac{1}{3}, 3\]
\[\text { Hence, putting the values of a and r, the required numbers are 18, 6, 2 or 2, 6 and 18 }.\]
APPEARS IN
संबंधित प्रश्न
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
For what values of x, the numbers `-2/7, x, -7/2` are in G.P?
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
Find :
the 8th term of the G.P. 0.3, 0.06, 0.012, ...
Which term of the G.P. :
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.
Find the rational number whose decimal expansion is \[0 . 423\].
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c are in G.P., prove that:
\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
Find the geometric means of the following pairs of number:
2 and 8
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
The fractional value of 2.357 is
In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
The numbers 3, x, and x + 6 form are in G.P. Find nth term
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
Express the following recurring decimal as a rational number:
`51.0bar(2)`
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
Answer the following:
If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.