English

The Product of Three Numbers in G.P. is 216. If 2, 8, 6 Be Added to Them, the Results Are in A.P. Find the Numbers. - Mathematics

Advertisements
Advertisements

Question

The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.

Solution

Let the terms of the given G.P. be \[\frac{a}{r}, \text { a and ar }\]

∴ Product = 216

\[\Rightarrow a^3 = 216\]

\[ \Rightarrow a = 6\]

It is given that \[\frac{a}{r} + 2, a + 8 \text { and ar } + 6\] are in A.P.

\[\therefore 2\left( a + 8 \right) = \frac{a}{r} + 2 + ar + 6\]

\[\text { Putting a = 6, we get }\]

\[ \Rightarrow 28 = \frac{6}{r} + 2 + 6r + 6\]

\[ \Rightarrow 28r = 6 r^2 + 8r + 6\]

\[ \Rightarrow 6 r^2 - 20r + 6 = 0\]

\[ \Rightarrow \left( 6r - 2 \right)\left( r - 3 \right) = 0\]

\[ \Rightarrow r = \frac{1}{3}, 3\]

\[\text { Hence, putting the values of a and r, the required numbers are  18, 6, 2 or 2, 6 and 18 }.\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.2 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.2 | Q 7 | Page 16

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


Given a G.P. with a = 729 and 7th term 64, determine S7.


Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


Find :

the 10th term of the G.P.

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]


Which term of the G.P. :

\[2, 2\sqrt{2}, 4, . . .\text {  is }128 ?\]


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that abc and d are in G.P.


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


Find the sum :

\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞


Express the recurring decimal 0.125125125 ... as a rational number.


Find the rational number whose decimal expansion is \[0 . 423\].


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If a, b, c, d are in G.P., prove that:

(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

Find the geometric means of the following pairs of number:

−8 and −2


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


The numbers 3, x, and x + 6 form are in G.P. Find x


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.


The numbers x − 6, 2x and x2 are in G.P. Find nth term


For a G.P. a = 2, r = `-2/3`, find S6


Express the following recurring decimal as a rational number:

`0.bar(7)`


Find : `sum_("n" = 1)^oo 0.4^"n"`


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Answer the following:

In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


The third term of G.P. is 4. The product of its first 5 terms is ______.


If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×