English

Find the Sum of the Following Serie to Infinity: 8 + 4 √ 2 + 4 + ... ∞ - Mathematics

Advertisements
Advertisements

Question

Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞

Solution

\[\text {  In the given G . P . , first term, } a = 8\]

\[ \text { and common ratio, } r = \frac{1}{\sqrt{2}}\]

\[\text { Hence, the sum S to infinity is given by } S = \frac{a}{1 - r} = \frac{8}{1 - \frac{1}{\sqrt{2}}} = \left( 2 + \sqrt{2} \right) . \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.4 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.4 | Q 1.2 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


Find the sum of the following geometric series:

1, −a, a2, −a3, ....to n terms (a ≠ 1)


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


Find the sum of the following serie to infinity:

\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]


Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.


Express the recurring decimal 0.125125125 ... as a rational number.


Find the rational number whose decimal expansion is \[0 . 423\].


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c, d are in G.P., prove that:

(b + c) (b + d) = (c + a) (c + d)


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


If the first term of a G.P. a1a2a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is


The fractional value of 2.357 is 


For the G.P. if a = `2/3`, t6 = 162, find r.


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.


The numbers x − 6, 2x and x2 are in G.P. Find nth term


For the following G.P.s, find Sn

0.7, 0.07, 0.007, .....


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


Find: `sum_("r" = 1)^10(3 xx 2^"r")`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Express the following recurring decimal as a rational number:

`2.3bar(5)`


If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


Select the correct answer from the given alternative.

If common ratio of the G.P is 5, 5th term is 1875, the first term is -


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


Answer the following:

If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×