English

If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P. - Mathematics

Advertisements
Advertisements

Question

If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.

Sum

Solution

Let the first term of the geometric progression = a,

Common ratio = r

∴ a4 = ar3 = x   ....(1)

a10 = ar9 = y  ....(2)

a16 = ar15 = z  ....(3)

Dividing (2) by (1), we obtain

`y/x = (ar^9)/(ar^3) = y/x = r^6`

Dividing (3) by (2), we obtain

`z/y = (ar^15)/(ar^3) = z/y = r^6`

∴ `y/x = z/y`

Thus, x, y, z are in G.P.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Sequences and Series - Exercise 9.3 [Page 192]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 9 Sequences and Series
Exercise 9.3 | Q 17 | Page 192

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.

 

The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.


If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to


The nth term of a G.P. is 128 and the sum of its n terms  is 225. If its common ratio is 2, then its first term is


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


For the following G.P.s, find Sn

3, 6, 12, 24, ...


For a G.P. if a = 2, r = 3, Sn = 242 find n


If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


Express the following recurring decimal as a rational number:

`2.bar(4)`


Find : `sum_("r" = 1)^oo 4(0.5)^"r"`


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.


The third term of a G.P. is 4, the product of the first five terms is ______.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×