Advertisements
Advertisements
Question
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
Solution
Here, a = 3
Common ratio,
\[r = \frac{1}{2}\]
Sn = \[\frac{3069}{512}\]
\[\therefore S_n = 3\left\{ \frac{1 - \left( \frac{1}{2} \right)^n}{1 - \frac{1}{2}} \right\}\]
\[ \Rightarrow \frac{3069}{512} = 3\left\{ \frac{1 - \frac{1}{2^n}}{\frac{1}{2}} \right\} \]
\[ \Rightarrow \frac{3069}{512} = 6 \left\{ 1 - \frac{1}{2^n} \right\}\]
\[ \Rightarrow \frac{3069}{3072} = 1 - \frac{1}{2^n} \]
\[ \Rightarrow \frac{1}{2^n} = 1 - \frac{3069}{3072} \]
\[ \Rightarrow \frac{1}{2^n} = \frac{3}{3072}\]
\[ \Rightarrow 2^n = \frac{3072}{3}\]
\[ \Rightarrow 2^n = 1024 \]
\[ \Rightarrow 2^n = 2^{10} \]
\[ \therefore n = 10\]
APPEARS IN
RELATED QUESTIONS
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
For what values of x, the numbers `-2/7, x, -7/2` are in G.P?
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Which term of the G.P. :
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
Find the sum of the following series:
0.5 + 0.55 + 0.555 + ... to n terms.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
Express the recurring decimal 0.125125125 ... as a rational number.
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P2
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Express the following recurring decimal as a rational number:
`2.bar(4)`
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
The third term of a G.P. is 4, the product of the first five terms is ______.