English

Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18. - Mathematics

Advertisements
Advertisements

Question

Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.

Sum

Solution

Let the geometric series be a, ar, ar2, ar3,...

Third term = ar2, first term = a

∴ ar2 – a = 9 …........(i)

Second term = ar, fourth term = ar3

ar – ar3 = 18 ….........(ii)

Dividing equation (i) by (ii), we get

`("a"("r"^2 - 1))/("a"("r" - "r"^3))`

= `9/18`

= `1/2`

or 2(r2 − 1) = r − r3

∴ r3 + 2r2 − r − 2 = 0

or (r − 1) (r + 1) (r + 2) = 0

or r = 1, −1, −2 if r = −2,

From equation (i), a(4 − 1) = 9

∴ a = 3

∴ 4th terms of the geometric progression 3, −6, 12, −24.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Sequences and Series - Exercise 9.3 [Page 193]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 9 Sequences and Series
Exercise 9.3 | Q 21 | Page 193

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.


The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


Find the sum of the following geometric series:

1, −a, a2, −a3, ....to n terms (a ≠ 1)


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Find the sum of the following serie to infinity:

\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]


Find the rational numbers having the following decimal expansion: 

\[3 . 5\overline 2\]


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


For the G.P. if r = `1/3`, a = 9 find t7


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


The numbers 3, x, and x + 6 form are in G.P. Find x


Find: `sum_("r" = 1)^10(3 xx 2^"r")`


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

9, 8.1, 7.29, ...


Express the following recurring decimal as a rational number:

`2.3bar(5)`


Select the correct answer from the given alternative.

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –


Select the correct answer from the given alternative.

If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Answer the following:

If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×