Advertisements
Advertisements
Question
For the G.P. if r = `1/3`, a = 9 find t7
Solution
tn = arn–1, where a = 9, r = `1/3`
∴ t7 = `9(1/3)^(7-1)`
= `9(1/3)^6`
= `3^2 xx 1/3^6`
= `1/3^4`
= `1/81`
APPEARS IN
RELATED QUESTIONS
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Find the 4th term from the end of the G.P.
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
Express the recurring decimal 0.125125125 ... as a rational number.
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If a, b, c are in G.P., then prove that:
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
If the fifth term of a G.P. is 2, then write the product of its 9 terms.
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is
The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
The numbers 3, x, and x + 6 form are in G.P. Find nth term
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For the following G.P.s, find Sn
3, 6, 12, 24, ...
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.