Advertisements
Advertisements
Question
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
Solution
geometric progressions 1, –a, a2, –a3,…
First term, a = 1, common ratio, r = `(-"a")/1 = -"a"`
∴ Sum of n terms = `("a"(1 - "r"^"n"))/(1 - "r")`, r > 1
= `("a"(-a)^"n")/(1 - "r")`, r > 1
= `(1.[1 - (-"a")^"n"])/(1 -(-"a"))`
= `([1 - (-a)^"n"])/(1 + "a")`
APPEARS IN
RELATED QUESTIONS
Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
Which term of the G.P. :
\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]
Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
Find the sum of the following series:
0.5 + 0.55 + 0.555 + ... to n terms.
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
Express the recurring decimal 0.125125125 ... as a rational number.
Find the rational number whose decimal expansion is \[0 . 423\].
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
Write the product of n geometric means between two numbers a and b.
The fractional value of 2.357 is
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
For the G.P. if a = `7/243`, r = 3 find t6.
For the G.P. if a = `2/3`, t6 = 162, find r.
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
For a G.P. a = 2, r = `-2/3`, find S6
Express the following recurring decimal as a rational number:
`2.3bar(5)`
Find : `sum_("n" = 1)^oo 0.4^"n"`
A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Answer the following:
Find `sum_("r" = 1)^"n" (2/3)^"r"`
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.