Advertisements
Advertisements
Question
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
Solution
\[\text { LHS } = 2^\frac{1}{4} . 4^\frac{2}{8} . 8^\frac{3}{16} . {16}^\frac{4}{32} . . . \infty \]
\[ = 2^\left( \frac{1}{4} + \frac{2}{8} + \frac{3}{16}\frac{3}{16}\frac{4}{32} . \infty \right) \]
\[ = 2^\left( \frac{1}{2^2} + \frac{2}{2^3} + \frac{3}{2^4} + \frac{4}{2^5} + . . . \infty \right) \]
\[ = 2^\frac{1}{2^2}\left\{ 1 + \frac{2}{2} + \frac{3}{2^2} + \frac{4}{2^3} . . . \infty \right\} \]
\[ = 2^\frac{1}{2^2}\left\{ \frac{1}{1 - \frac{1}{2}} + \frac{1 . \frac{1}{2}}{\left( 1 - \frac{1}{2} \right)^2} \right\} \]
\[ = 2^\frac{1}{2^2}\left\{ 2 + 2 \right\} \]
\[ = 2^1 \]
\[ = 2 = \text { RHS }\]
APPEARS IN
RELATED QUESTIONS
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Find :
the 8th term of the G.P. 0.3, 0.06, 0.012, ...
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.
Find the geometric means of the following pairs of number:
2 and 8
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
For the G.P. if a = `2/3`, t6 = 162, find r.
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
For a G.P. If t3 = 20 , t6 = 160 , find S7
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`
The third term of a G.P. is 4, the product of the first five terms is ______.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.
If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.