English

Find : the 8th Term of the G.P. 0.3, 0.06, 0.012, ... - Mathematics

Advertisements
Advertisements

Question

Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...

Solution

Here,

\[\text { First term }, a = 0 . 3\]

\[\text { Common ratio }, r = \frac{a_2}{a_1} = \frac{0 . 06}{0 . 3} = 0 . 2\]

\[ \therefore 8th\text { term } = a_8 = a r^{(8 - 1)} = 0 . 3(0 . 2 )^7 \]

\[\text { Thus, the 8th term of the given GP is } 0 . 3(0 . 2 )^7 .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.1 | Q 3.3 | Page 10

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?


If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.


Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]


Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?

 

The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Find the sum of the following geometric progression:

2, 6, 18, ... to 7 terms;


Find the sum of the following geometric series:

\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞


Find the rational number whose decimal expansion is \[0 . 423\].


One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


Mark the correct alternative in the following question: 

Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to 


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


The numbers x − 6, 2x and x2 are in G.P. Find x


For a G.P. If t4 = 16, t9 = 512, find S10


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


Express the following recurring decimal as a rational number:

`2.bar(4)`


Find : `sum_("r" = 1)^oo (-1/3)^"r"`


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


Answer the following:

Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×