Advertisements
Advertisements
Question
Express the following recurring decimal as a rational number:
`2.bar(4)`
Solution
`2.bar(4)` = 2 + 0.4 + 0.04 + 0.004 + ... ...(1)
These terms after the first term form a G.P. whose first term is a = 0.4 and common ratio = r = 0.1
Since |r| = |0.1| = 0.1 < 1, the sum to infinity of this G.P. exists and
S = `"a"/(1 - "r")`
= `0.4/(1 - 0.1)`
= `0.4/0.9`
= `4/9`
∴ from (1), `2.bar(4) = 2 + 4/9 = 22/9`
APPEARS IN
RELATED QUESTIONS
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c are in G.P., prove that the following is also in G.P.:
a2 + b2, ab + bc, b2 + c2
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
Find the geometric means of the following pairs of number:
−8 and −2
If the fifth term of a G.P. is 2, then write the product of its 9 terms.
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
Which term of the G.P. 5, 25, 125, 625, … is 510?
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
The numbers x − 6, 2x and x2 are in G.P. Find x
For the following G.P.s, find Sn
3, 6, 12, 24, ...
For a G.P. if S5 = 1023 , r = 4, Find a
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
Answer the following:
Find `sum_("r" = 1)^"n" (2/3)^"r"`
Answer the following:
If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.
The third term of a G.P. is 4, the product of the first five terms is ______.
If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.
For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.