Advertisements
Advertisements
Question
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
Solution
\[\text { Let a be the first term and r be the common ratio of the given G . P } . \]
\[ \therefore p = 5^{th}\text { term } \]
\[ \Rightarrow p = a r^4 . . . \left( 1 \right)\]
\[q = 8^{th} \text { term } \]
\[ \Rightarrow q = a r^7 . . . \left( 2 \right)\]
\[s = {11}^{th} \]
\[ \Rightarrow s = a r^{10} . . . \left( 3 \right)\]
\[\text { Now, } q^2 = \left( a r^7 \right)^2 = a^2 r^{14} \]
\[ \Rightarrow \left( a r^4 \right) \left( a r^{10} \right) = ps \left[ \text { From } \left( 1 \right) \text { and } \left( 3 \right) \right]\]
\[ \therefore q^2 = ps\]
APPEARS IN
RELATED QUESTIONS
Given a G.P. with a = 729 and 7th term 64, determine S7.
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following geometric series:
`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;
Find the sum of the following series:
0.5 + 0.55 + 0.555 + ... to n terms.
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.
The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
If A1, A2 be two AM's and G1, G2 be two GM's between a and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
Check whether the following sequence is G.P. If so, write tn.
7, 14, 21, 28, …
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
Express the following recurring decimal as a rational number:
`2.bar(4)`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.