English

Find the sum of the following geometric series: 35+452+353+454+.... to 2n terms; - Mathematics

Advertisements
Advertisements

Question

Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;

Sum

Solution

Common Ratio = r = `(3/5)/(4/5^2) = 3/5 × 25/4 = 15/4`

∴ Sum of GP for n terms = `[a(r^n - 1)]/(r - 1)`   ...(1)

⇒ a = `3/5, r = 15/4`, n = 2n

∴ Substituting the above values in (1), we get,

⇒ `[a(r^n - 1)]/(r - 1)`

⇒ `{3/5[(15/4)^"2n" - 1]}/(15/4 - 1)`

⇒ `{3/5[(15/4)^"2n" - 1]}/((15 - 1)/4)`

⇒ `{3/5[(15/4)^"2n" - 1]}/((11)/4)`

⇒ `{3[(15/4)^"2n" - 1]× 4}/(5 × 11)`

⇒ `{12[(15/4)^"2n" - 1]}/(55)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.3 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.3 | Q 2.5 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.


Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


Which term of the G.P. :

\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]


The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Find the sum of the following series:

9 + 99 + 999 + ... to n terms;


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


Express the recurring decimal 0.125125125 ... as a rational number.


Find the rational number whose decimal expansion is \[0 . 423\].


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


The fractional value of 2.357 is 


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


For the following G.P.s, find Sn

3, 6, 12, 24, ...


For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...


For a G.P. a = 2, r = `-2/3`, find S6


For a G.P. if S5 = 1023 , r = 4, Find a


For a G.P. if a = 2, r = 3, Sn = 242 find n


For a G.P. If t3 = 20 , t6 = 160 , find S7


The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares


Find GM of two positive numbers whose A.M. and H.M. are 75 and 48


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


Select the correct answer from the given alternative.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)


Answer the following:

For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×