English

Find rr∑r=0∞(-8)(-12)r - Mathematics and Statistics

Advertisements
Advertisements

Question

Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 

Sum

Solution

`sum_("r" = 0)^oo (-8)(-1/2)^"r" = -8 sum_("r" = 1)^oo (-1/2)^"r"`

= `-8[(-1/2) + (-1/2)^2 + (-1/2)^3 + ...]`   ...(1)

The terms `(-1/2), (-1/2)^2, (-1/2)^3  ...` are in G.P. with a = `-1/2`, r = `-1/2`.

Since |r| = `|-1/2| = 1/2 < 1`, the sum to infinity of this G.P. exist and

S = `"a"/(1 - "r")`

= `((-1/2))/(1 - (-1/2))`

= `-1/2 xx 2/3`

= `(-1)/3`

∴ from (1),

`sum_("r" = 1)^oo (-8)(-1/2)^"r" = -8(-1/3) = 8/3`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Sequences and Series - Exercise 2.3 [Page 34]

APPEARS IN

RELATED QUESTIONS

Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?

 

Find three numbers in G.P. whose sum is 65 and whose product is 3375.


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


If a, b, c are in G.P., prove that:

(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.


If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


If the first term of a G.P. a1a2a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is


If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


For the G.P. if r = − 3 and t6 = 1701, find a.


For the G.P. if a = `2/3`, t6 = 162, find r.


Find: `sum_("r" = 1)^10(3 xx 2^"r")`


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×