Advertisements
Advertisements
Question
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
Solution
(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ...to n terms;
Let Sn = (x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ...to n terms
Let us multiply and divide by (x – y) we get,
Sn = `1/(x – y)` [(x + y)(x – y) + (x2 + xy + y2)(x – y) ...upto n terms]
(x – y)Sn = (x2 – y2) + x3 + x2y + xy2 – x2y – xy2 – y3 ...upto n terms
(x – y)Sn = (x2 + x3 + x4 + ...n terms) – (y2 + y3 + y4 +...n terms)
By using the formula,
Sum of GP for n terms = `(a(1 – r^n))/(1 – r)`
We have two G.Ps in the above sum, so,
`(x – y) S_n = x^2((x^n – 1)/(x – 1)) – y^2((y^n – 1)/(y – 1))`
` S_n = 1/(x – y) . {x^2((x^n – 1)/(x – 1)) – y^2((y^n – 1)/(y – 1))}`
APPEARS IN
RELATED QUESTIONS
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Find the 4th term from the end of the G.P.
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following geometric progression:
4, 2, 1, 1/2 ... to 10 terms.
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
Find the sum of the following serie to infinity:
8 + \[4\sqrt{2}\] + 4 + ... ∞
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
Find the rational number whose decimal expansion is \[0 . 423\].
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]
Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
Express the following recurring decimal as a rational number:
`2.bar(4)`
Select the correct answer from the given alternative.
The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
Answer the following:
If for a G.P. first term is (27)2 and seventh term is (8)2, find S8
Answer the following:
If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.
If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1
The sum or difference of two G.P.s, is again a G.P.