English

Check whether the following sequence is G.P. If so, write tn. 2, 6, 18, 54, … - Mathematics and Statistics

Advertisements
Advertisements

Question

Check whether the following sequence is G.P. If so, write tn.

2, 6, 18, 54, …

Sum

Solution

2, 6, 18, 54, …

t1 = 2, t2 = 6, t3 = 18, t4 = 54, …

Here, `"t"_2/"t"_1 = "t"_3/"t"_2 = "t"_4/"t"_3` = 3

∵ the ratio of any two consecutive terms is a constant, hence the given sequence is a Geometric progression.

Here, a = 2, r = 3

tn = arn–1

∴ tn = 2(3n–1)

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Sequences and Series - Exercise 2.1 [Page 27]

APPEARS IN

RELATED QUESTIONS

Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


Given a G.P. with a = 729 and 7th term 64, determine S7.


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


Find : 

nth term of the G.P.

\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Find the sum of the following geometric progression:

1, −1/2, 1/4, −1/8, ... to 9 terms;


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


Find the sum :

\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


Find the rational numbers having the following decimal expansion: 

\[3 . 5\overline 2\]


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If a, b, c, d are in G.P., prove that:

(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.


Find the geometric means of the following pairs of number:

−8 and −2


If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


For the G.P. if a = `2/3`, t6 = 162, find r.


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]


Express the following recurring decimal as a rational number:

`2.3bar(5)`


Find : `sum_("n" = 1)^oo 0.4^"n"`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×