Advertisements
Advertisements
प्रश्न
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
उत्तर
2, 6, 18, 54, …
t1 = 2, t2 = 6, t3 = 18, t4 = 54, …
Here, `"t"_2/"t"_1 = "t"_3/"t"_2 = "t"_4/"t"_3` = 3
∵ the ratio of any two consecutive terms is a constant, hence the given sequence is a Geometric progression.
Here, a = 2, r = 3
tn = arn–1
∴ tn = 2(3n–1)
APPEARS IN
संबंधित प्रश्न
If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
Find the sum of the following geometric series:
\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text { to n terms }\]
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
Express the recurring decimal 0.125125125 ... as a rational number.
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
If a, b, c, d are in G.P., prove that:
\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]
If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
For the G.P. if r = `1/3`, a = 9 find t7
Which term of the G.P. 5, 25, 125, 625, … is 510?
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`-3, 1, (-1)/3, 1/9, ...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
9, 8.1, 7.29, ...
Express the following recurring decimal as a rational number:
`0.bar(7)`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.