मराठी

At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years. - Mathematics

Advertisements
Advertisements

प्रश्न

At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.

बेरीज

उत्तर

After each year the value of the machine is 80% of its value the previous year

So at the end of 5 years the machine will depreciate as many times as 5.

Hence, we have to find the 6th term of the G.P.

Whose first term a1 is 1250 and common ratio r is .8

Hence, value at the end 5 years = t6

= a1 r5

= 1250 (.8)5

= 409.6

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Sequences and Series - Solved Examples [पृष्ठ १५२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 9 Sequences and Series
Solved Examples | Q 4 | पृष्ठ १५२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Find the sum to n terms of the sequence, 8, 88, 888, 8888… .


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?

 

The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


Find the geometric means of the following pairs of number:

2 and 8


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


For the G.P. if r = `1/3`, a = 9 find t7


For the G.P. if a = `2/3`, t6 = 162, find r.


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


Express the following recurring decimal as a rational number:

`51.0bar(2)`


Find : `sum_("n" = 1)^oo 0.4^"n"`


Answer the following:

In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×