हिंदी

At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years. - Mathematics

Advertisements
Advertisements

प्रश्न

At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.

योग

उत्तर

After each year the value of the machine is 80% of its value the previous year

So at the end of 5 years the machine will depreciate as many times as 5.

Hence, we have to find the 6th term of the G.P.

Whose first term a1 is 1250 and common ratio r is .8

Hence, value at the end 5 years = t6

= a1 r5

= 1250 (.8)5

= 409.6

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Solved Examples [पृष्ठ १५२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Solved Examples | Q 4 | पृष्ठ १५२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Insert two numbers between 3 and 81 so that the resulting sequence is G.P.


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


Find the rational number whose decimal expansion is \[0 . 423\].


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


The two geometric means between the numbers 1 and 64 are 


In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is 


For the G.P. if a = `2/3`, t6 = 162, find r.


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


The numbers 3, x, and x + 6 form are in G.P. Find nth term


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


For a G.P. if S5 = 1023 , r = 4, Find a


The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]


Express the following recurring decimal as a rational number:

`2.bar(4)`


Express the following recurring decimal as a rational number:

`51.0bar(2)`


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c


If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


The third term of a G.P. is 4, the product of the first five terms is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×