Advertisements
Advertisements
प्रश्न
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
उत्तर
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to `a/b` or `b/c`.
Explanation:
Since a, b and c are in G.P
∴ `b/a = c/b` = r .....(Constant)
⇒ b = ar and c = br
⇒ c = ar · r = ar2
So `(a - b)/(b - c) = (a - ar)/(ar - ar^2)`
= `(a(1 - r))/(ar(1 - r))`
= `1/r`
= `a/b`
= `b/c`
APPEARS IN
संबंधित प्रश्न
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
For what values of x, the numbers `-2/7, x, -7/2` are in G.P?
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
Find the sum of the following geometric progression:
4, 2, 1, 1/2 ... to 10 terms.
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
The numbers x − 6, 2x and x2 are in G.P. Find x
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.