हिंदी

The 4th and 7th Terms of a G.P. Are 1 27 and 1 729 Respectively. Find the Sum of N Terms of the G.P. - Mathematics

Advertisements
Advertisements

प्रश्न

The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.

उत्तर

Let a be the first term and r be the common ratio of the G.P.

\[\therefore a_4 = \frac{1}{27} \]

\[ \Rightarrow a r^{4 - 1} = \frac{1}{27}\]

\[ \Rightarrow a r^3 = \frac{1}{27} \]

\[ \Rightarrow \left( a r^3 \right)^2 = \frac{1}{{27}^2}\]

\[ \Rightarrow a^2 r^6 = \frac{1}{729} \]

\[ \Rightarrow a r^6 = \frac{1}{729a} . . . \left( i \right)\]

\[\text {Similarly }, a_7 = \frac{1}{729} \]

\[ \Rightarrow a r^{7 - 1} = \frac{1}{729}\]

\[ \Rightarrow a r^6 = \frac{1}{729} \]

\[ \Rightarrow a r^6 = \frac{1}{729a} \left[ \text { From } \left( i \right) \right] \]

\[ \therefore a = 1\]

\[\text { Putting this in } a_4 = \frac{1}{27}\]

\[ \Rightarrow a r^3 = \frac{1}{3^3}\]

\[ \Rightarrow r^3 = \frac{1}{3^3} \]

\[ \therefore r = \frac{1}{3}\]

\[\text { Now, sum of n terms of the G . P } . , S_n = a\left( \frac{r^n - 1}{r - 1} \right)\]

\[ \Rightarrow S_n = 1\left( \frac{1 - \left( \frac{1}{3} \right)^n}{1 - \frac{1}{3}} \right) \]

\[ \Rightarrow S_n = \frac{3}{2}\left( 1 - \frac{1}{3^n} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.3 | Q 11 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...


Show that one of the following progression is a G.P. Also, find the common ratio in case:

\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]


Find:
the ninth term of the G.P. 1, 4, 16, 64, ...


Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


Find the sum of the following geometric series:

\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


If abc are in G.P. and xy are AM's between ab and b,c respectively, then 


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Answer the following:

Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


Answer the following:

Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×