Advertisements
Advertisements
प्रश्न
Answer the following:
Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`
उत्तर
The sum of first n terms of a G.P. is given by
Sn = `("a"(1 - "r"^"n"))/(1 - "r")`, if r < 1
Here, a = 1, r = `2/3`
∴ sum of first 5 terms of the G.P.
= S5 = `("a"(1 - "r"^5))/(1 - "r")`
= `(1[1 - (2/3)^5])/(1 - (2/3))`
= `(1 - 32/243)/((1/3))`
= `211/243 xx 3`
= `211/81`
APPEARS IN
संबंधित प्रश्न
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that a, b, c and d are in G.P.
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
Find the geometric means of the following pairs of number:
a3b and ab3
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
Write the product of n geometric means between two numbers a and b.
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
Express the following recurring decimal as a rational number:
`0.bar(7)`
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Find : `sum_("n" = 1)^oo 0.4^"n"`
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Answer the following:
Find `sum_("r" = 1)^"n" (2/3)^"r"`
Answer the following:
If for a G.P. first term is (27)2 and seventh term is (8)2, find S8
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.
If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.