हिंदी

If 1 a + B , 1 2 B , 1 B + C Are Three Consecutive Terms of an A.P., Prove that A, B, C Are the Three Consecutive Terms of a G.P. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.

उत्तर

Here,

\[\frac{1}{a + b}, \frac{1}{2b} \text { and } \frac{1}{b + c} \text { are in A . P } . \]

\[\therefore 2 \times \frac{1}{2b} = \frac{1}{a + b} + \frac{1}{b + c}\]

\[ \Rightarrow \frac{1}{b} = \frac{b + c + a + b}{\left( a + b \right)\left( b + c \right)}\]

\[ \Rightarrow \left( a + b \right)\left( b + c \right) = b\left( 2b + a + c \right)\]

\[ \Rightarrow ab + ac + b^2 + bc = 2 b^2 + ab + bc\]

\[ \Rightarrow 2 b^2 - b^2 = ac\]

\[ \Rightarrow b^2 = ac\]

\[\text { Thus, a, b and c are in G . P } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.5 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.5 | Q 17 | पृष्ठ ४६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Given a G.P. with a = 729 and 7th term 64, determine S7.


If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`


Insert two numbers between 3 and 81 so that the resulting sequence is G.P.


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.


Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn


Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


Which term of the G.P. :

\[2, 2\sqrt{2}, 4, . . .\text {  is }128 ?\]


If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that abc and d are in G.P.


Find three numbers in G.P. whose sum is 65 and whose product is 3375.


The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Find the sum of the following geometric series:

\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


Find the sum of the following serie to infinity:

\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is 


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


For a G.P. if S5 = 1023 , r = 4, Find a


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


Express the following recurring decimal as a rational number:

`2.bar(4)`


Find : `sum_("r" = 1)^oo (-1/3)^"r"`


Select the correct answer from the given alternative.

The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –


The third term of a G.P. is 4, the product of the first five terms is ______.


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×