Advertisements
Advertisements
प्रश्न
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
उत्तर
Here, a = 80, r = `3/4`
1st height in the bounce = `80 xx 3/4`
Height in the 6th bounce = `80 xx 3/4 xx (3/4)^5`
= `80 xx (3/4)^6`
= Height in the nth bounce = `80(3/4)^"n"`
APPEARS IN
संबंधित प्रश्न
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.
Given a G.P. with a = 729 and 7th term 64, determine S7.
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Find the sum of the following geometric series:
\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text { to n terms }\]
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
For the G.P. if a = `2/3`, t6 = 162, find r.
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
Express the following recurring decimal as a rational number:
`2.bar(4)`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Answer the following:
If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`
In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.