हिंदी

For the G.P. if a = 23, t6 = 162, find r. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For the G.P. if a = `2/3`, t6 = 162, find r.

योग

उत्तर

Given, a = `2/3`, t6 = 162

tn = arn–1

∴ t6 = `(2/3)("r"^(6 - 1))`

∴ 162 = `2/3"r"^5`

∴ r5 = `162 xx 3/2`

∴ r5 = 35

∴ r = 3

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Exercise 2.1 [पृष्ठ २७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Exercise 2.1 | Q 2. (iv) | पृष्ठ २७

संबंधित प्रश्न

Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?


Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]


Find three numbers in G.P. whose sum is 38 and their product is 1728.


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.


If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.


Find the rational number whose decimal expansion is \[0 . 423\].


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.


If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.


Write the product of n geometric means between two numbers a and b

 


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is


In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is 


Mark the correct alternative in the following question: 

Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to 


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


The numbers x − 6, 2x and x2 are in G.P. Find nth term


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


For a G.P. If t3 = 20 , t6 = 160 , find S7


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/2, 1/4, 1/8, 1/16,...`


Express the following recurring decimal as a rational number:

`2.bar(4)`


Express the following recurring decimal as a rational number:

`51.0bar(2)`


A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Answer the following:

For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×