Advertisements
Advertisements
प्रश्न
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`
उत्तर
Let a be the first term and r be the common ratio of a G.P.
Given that ap = q
⇒ arp–1 = q ....(i)
And aq = p
⇒ arq–1 = p ....(ii)
Dividing equation (i) by equation (ii) we get,
`(ar^(p - 1))/(ar^(q - 1)) = q/p`
⇒ `(r^(p - 1))/(r^(q - 1)) = q/p`
⇒ `r^(p - q) = q/p`
⇒ r = `(q/p)^(1/(p - q))`
Putting the value of r in equation (i), we get
`a[q/p]^(1/(p- q) xx p - 1)` = q
`a[q/p]^((p - 1)/(p - q))` = q
∴ a = `q * [p/q]^((p - 1)/(p - q))`
Now Tp+q = `ar^(p + q - 1)`
= `q[p/q]^((p - 1)/(p - q)) [q/p]^(1/(p - q)(p + q - 1)`
= `q(p/q)^((p - 1)/(p - q)) * (q/p)^((p + q - 1)/(p - q))`
= `q(p/q)^((p - 1)/(q - q)) * (p/q)^((-(p + q - 1))/(p - q))`
= `q(p/q)^((p - 1)/(p - q) - (p + q - 1)/(p - q))`
= `q(p/q)^((p - 1 - p - q + 1)/(p - q))`
= `q(p/q)^((-q)/(p - q))`
= `q(p/q)^(q/(p - q))`
= `(q^(q/(p - q) + 1))/(p^(q/(p - q))`
= `(q^(p/(p - q)))/(p^(q/(p - q))`
= `[q^p/p^q]^(1/(p - q))`
Hence, the required term = `[q^p/p^q]^(1/(p - q))`.
APPEARS IN
संबंधित प्रश्न
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
Express the recurring decimal 0.125125125 ... as a rational number.
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .
If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
For the G.P. if r = `1/3`, a = 9 find t7
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
Find : `sum_("n" = 1)^oo 0.4^"n"`
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.