Advertisements
Advertisements
प्रश्न
For the G.P. if r = `1/3`, a = 9 find t7
उत्तर
tn = arn–1, where a = 9, r = `1/3`
∴ t7 = `9(1/3)^(7-1)`
= `9(1/3)^6`
= `3^2 xx 1/3^6`
= `1/3^4`
= `1/81`
APPEARS IN
संबंधित प्रश्न
For what values of x, the numbers `-2/7, x, -7/2` are in G.P?
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
Which term of the G.P. :
\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that a, b, c and d are in G.P.
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
Write the product of n geometric means between two numbers a and b.
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to
The two geometric means between the numbers 1 and 64 are
For the G.P. if a = `2/3`, t6 = 162, find r.
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
For a G.P. if S5 = 1023 , r = 4, Find a
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`
In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.