Advertisements
Advertisements
प्रश्न
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
उत्तर
Let the three numbers in G. P. be `"a"/"r"`, a, ar.
According to the given conditions,
`"a"/"r" + "a" + "ar"` = 21
∴ `1/"r" + 1 + "r" = 21/"a"`
∴ `1/"r" + "r" = 21/"a" - 1` ...(i)
Also, `"a"^2/"r"^2 + "a"^2 + "a"^2"r"^2` = 189
∴ `1/"r"^2 + 1 + "r"^2 = 189/"a"^2`
∴ `1/"r"^2 + "r"^2 = 189/"a"^2 - 1` ...(ii)
On squaring equation (i), we get
∴ `1/"r"^2 + "r"^2 + 2 = 441/"a"^2 - 42/"a" + 1`
∴ `(189/"a"^2 - 1) + 2 = 441/"a"^2 - 42/"a" + 1` ...[From (ii)]
∴ `189/"a"^2 + 1 = 441/"a"^2 - 42/"a" + 1`
∴ `441/"a"^2 - 189/"a"^2 - 42/"a"` = 0
∴ `252/"a"^2 = 42/"a"`
∴ 252 = 42a
∴ a = 6
Substituting the value of a in (i), we get
`1/"r" + "r" = 21/6 - 1`
∴ `(1 + "r"^2)/"r" = 15/6`
∴ `(1 + "r"^2)/"r" = 5/2`
∴ 2r2 – 5r + 2 = 0
∴ 2r2 – 4r – r + 2 = 0
∴ (2r – 1) (r – 2) = 0
∴ r = `1/2` or 2.
When a = 6, r = `1/2`,
`"a"/"r"` = 12, a = 6, ar = 3
When a = 6, r = 2
`"a"/"r"` = 3, a = 6, ar = 12
∴ the three numbers are 12, 6, 3 or 3, 6, 12.
APPEARS IN
संबंधित प्रश्न
Evaluate `sum_(k=1)^11 (2+3^k )`
Given a G.P. with a = 729 and 7th term 64, determine S7.
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
Find the sum of the following geometric progression:
1, 3, 9, 27, ... to 8 terms;
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]
Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .
The fractional value of 2.357 is
For the G.P. if a = `7/243`, r = 3 find t6.
Which term of the G.P. 5, 25, 125, 625, … is 510?
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
Express the following recurring decimal as a rational number:
`2.3bar(5)`
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
Find `sum_("r" = 1)^"n" (2/3)^"r"`
Answer the following:
If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.
If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.