हिंदी

Find the Sum of the Following Series: 7 + 77 + 777 + ... to N Terms; - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the following series:

7 + 77 + 777 + ... to n terms;

उत्तर

We have,
7 + 77 + 777 + ... n terms

\[S_n\] = 7 [1 + 11 + 111 + ... n terms]

\[= \frac{7}{9}\left( 9 + 99 + 999 + . . . \text { n terms } \right)\]

\[ = \frac{7}{9}\left\{ \left( 10 - 1 \right) + \left( {10}^2 - 1 \right) + \left( {10}^3 - 1 \right) + . . . + \left( {10}^n - 1 \right) \right\}\]

\[ = \frac{7}{9}\left\{ \left( 10 + {10}^2 + {10}^3 + . . . + {10}^n \right) \right\} - \left( 1 + 1 + 1 + 1 . . . \text {n times }\right)\]

\[ = \frac{7}{9}\left\{ 10 \times \frac{\left( {10}^n - 1 \right)}{10 - 1} - n \right\} = \frac{7}{9} \left\{ \frac{10}{9}\left( {10}^n - 1 \right) - n \right\}\]

\[ = \frac{7}{81}\left\{ {10}^{n + 1} - 9n - 10 \right\}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.3 | Q 4.2 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.


Find the 4th term from the end of the G.P.

\[\frac{2}{27}, \frac{2}{9}, \frac{2}{3}, . . . , 162\]

In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.


Find the sum of the following geometric progression:

1, −1/2, 1/4, −1/8, ... to 9 terms;


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If a, b, c, d are in G.P., prove that:

(b + c) (b + d) = (c + a) (c + d)


If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)


If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.


If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.


If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


The fractional value of 2.357 is 


If abc are in G.P. and xy are AM's between ab and b,c respectively, then 


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


Check whether the following sequence is G.P. If so, write tn.

2, 6, 18, 54, …


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


For a G.P. if S5 = 1023 , r = 4, Find a


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


Express the following recurring decimal as a rational number:

`0.bar(7)`


If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

If for a G.P. first term is (27)2 and seventh term is (8)2, find S8 


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×