Advertisements
Advertisements
प्रश्न
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
उत्तर
Let a be the first term and r be the common ratio of the G.P.
\[a_2 = 24 \]
\[ \Rightarrow a r^{2 - 1} = 24\]
\[ \Rightarrow ar = 24 . . . \left( i \right)\]
\[\text { Similarly }, a_5 = 81 \]
\[ \Rightarrow a r^{5 - 1} = 24\]
\[ \Rightarrow a r^4 = 81\]
\[ \Rightarrow \frac{24 \times r^4}{r} = 81 \left[ \text { From } \left( i \right) \right]\]
\[ \Rightarrow r^3 = \frac{81}{24} \]
\[ \therefore r^3 = \frac{27}{8}\]
\[ \Rightarrow r = \frac{3}{2}\]
\[\text { Putting }r = \frac{3}{2}\text { in } \left( i \right)\]
\[3a = 48 \]
\[ \Rightarrow a = 16\]
\[\text { So, the geometric series is } 16 + 24 + 36 + . . . + 16 \left( \frac{3}{2} \right)^8 \]
\[\text { And }, S_8 = 16\left( \frac{\left( \frac{3}{2} \right)^8 - 1}{\frac{3}{2} - 1} \right) \]
\[ \Rightarrow S_8 = 32\left( \frac{6561 - 256}{256} \right) = \frac{32 \times 6305}{256} = \frac{6305}{8}\]
APPEARS IN
संबंधित प्रश्न
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
Find the 4th term from the end of the G.P.
If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that a, b, c and d are in G.P.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following geometric series:
`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
Find the sum of the following series:
0.5 + 0.55 + 0.555 + ... to n terms.
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.
Find the sum of the following serie to infinity:
8 + \[4\sqrt{2}\] + 4 + ... ∞
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is
In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is
Check whether the following sequence is G.P. If so, write tn.
7, 14, 21, 28, …
The numbers 3, x, and x + 6 form are in G.P. Find x
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
Express the following recurring decimal as a rational number:
`2.bar(4)`
Find : `sum_("n" = 1)^oo 0.4^"n"`
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.