Advertisements
Advertisements
प्रश्न
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
उत्तर
This infinite G.P has first term a = 10 and common ratio r = `-9/10 = -0.9`
Thus the sum of the infinite G.P will be:
10 - 9 + 8.9 - 7.29 + ... ∞ = `"a"/(1-"r")` [Since |r| < 1]
= `10/(1-(-0.9))`
= `10/1.9`
= `100/19`
APPEARS IN
संबंधित प्रश्न
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
Evaluate `sum_(k=1)^11 (2+3^k )`
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
Find :
the 8th term of the G.P. 0.3, 0.06, 0.012, ...
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
Which term of the G.P. :
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]
If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that a, b, c and d are in G.P.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following geometric progression:
4, 2, 1, 1/2 ... to 10 terms.
Find the sum of the following geometric series:
`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Find the sum of the following serie to infinity:
\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
Find the rational numbers having the following decimal expansion:
\[0 . 6\overline8\]
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
If the fifth term of a G.P. is 2, then write the product of its 9 terms.
If logxa, ax/2 and logb x are in G.P., then write the value of x.
The fractional value of 2.357 is
If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is
The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
Express the following recurring decimal as a rational number:
`2.bar(4)`
Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"`
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
The sum or difference of two G.P.s, is again a G.P.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.