Advertisements
Advertisements
Question
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Solution
This infinite G.P has first term a = 10 and common ratio r = `-9/10 = -0.9`
Thus the sum of the infinite G.P will be:
10 - 9 + 8.9 - 7.29 + ... ∞ = `"a"/(1-"r")` [Since |r| < 1]
= `10/(1-(-0.9))`
= `10/1.9`
= `100/19`
APPEARS IN
RELATED QUESTIONS
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
For a G.P. If t3 = 20 , t6 = 160 , find S7
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
Answer the following:
If for a G.P. first term is (27)2 and seventh term is (8)2, find S8
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.
The third term of a G.P. is 4, the product of the first five terms is ______.
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.
If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.