Advertisements
Advertisements
Question
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`
Solution
S = `1 + 4/5 + 7/5^2 + 10/5^3 + ...` ...(i)
Multiplying (i) by `1/5`, we get
`1/5 "S" = 1/5 + 4/5^2 + 7/5^3 + 10/5^4 + ...` ...(ii)
Equation (i) – (ii), we get
`4/5 "S" = 1 + 3/5 + 3/5^2 + 3/5^3 + ...`
= `1 + (3/5)/(1 - 1/5)`
= `1 + 3/4`
= `7/4`
∴ S = `35/16`
APPEARS IN
RELATED QUESTIONS
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
Find the rational number whose decimal expansion is \[0 . 423\].
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
For the G.P. if r = `1/3`, a = 9 find t7
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
For a G.P. if a = 2, r = 3, Sn = 242 find n
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Answer the following:
Find `sum_("r" = 1)^"n" (2/3)^"r"`
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
The third term of a G.P. is 4, the product of the first five terms is ______.