Advertisements
Advertisements
Question
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
Solution
We have:
\[ S_p = 1 + r^p + r^{2p} + . . . \infty \]
\[ \therefore S_p = \frac{1}{1 - r^p}\]
\[\text { Similarly }, s_p = 1 - r^p + r^{2p} - . . . \infty \]
\[ \therefore s_p = \frac{1}{1 - \left( - r^p \right)} = \frac{1}{1 + r^p}\]
\[\text { Now }, S_P + s_p = \frac{1}{1 - r^p} + \frac{1}{1 + r^p} = \frac{\left( 1 - r^p \right) + \left( 1 + r^p \right)}{\left( 1 - r^{2p} \right)}\]
\[ \Rightarrow \frac{2}{1 - r^{2p}} = 2 S_{2P} \]
\[ \therefore S_P + s_p = 2 S_{2P}\]
APPEARS IN
RELATED QUESTIONS
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .
If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is
If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is
In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
Express the following recurring decimal as a rational number:
`2.3bar(5)`
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
Answer the following:
Find `sum_("r" = 1)^"n" (2/3)^"r"`
The third term of a G.P. is 4, the product of the first five terms is ______.
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.