English

If Second Term of a G.P. is 2 and the Sum of Its Infinite Terms is 8, Then Its First Term is - Mathematics

Advertisements
Advertisements

Question

If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is

Options

  • (a) 1/4

  • (b) 1/2 

  • (c) 2

  • (d) 4 

MCQ

Solution

(d) 4 

\[a_2 = 2 \]
\[ \therefore ar = 2 . . . . . . . . (i)\]
\[\text{ Also }, S_\infty = 8\]
\[ \Rightarrow \frac{a}{\left( 1 - r \right)} = 8\]
\[ \Rightarrow \frac{a}{\left( 1 - \frac{2}{a} \right)} = 8 \left[ \text{ Using } (i) \right]\]
\[ \Rightarrow a^2 = 8\left( a - 2 \right)\]
\[ \Rightarrow a^2 - 8a + 16 = 0\]
\[ \Rightarrow \left( a - 4 \right)^2 = 0\]
\[ \Rightarrow a = 4\]
\[\] 

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.8 [Page 57]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.8 | Q 13 | Page 57

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


Evaluate `sum_(k=1)^11 (2+3^k )`


The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.


Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.


Find:
the ninth term of the G.P. 1, 4, 16, 64, ...


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


Find the sum of the following geometric progression:

2, 6, 18, ... to 7 terms;


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.


Express the recurring decimal 0.125125125 ... as a rational number.


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


For the G.P. if a = `2/3`, t6 = 162, find r.


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


For a G.P. a = 2, r = `-2/3`, find S6


For a G.P. if S5 = 1023 , r = 4, Find a


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.


A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball


Select the correct answer from the given alternative.

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Answer the following:

In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


The third term of a G.P. is 4, the product of the first five terms is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×