English

Answer the following: In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following:

In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term

Sum

Solution

Given, t4 = 48, t8 = 768

tn = arn–1

∴ t4 = ar3

∴ ar3 = 48    ...(i)

and ar7 = 768   ...(ii)

Equation (ii) ÷ equation (i), we get

∴ `"ar"^7/"ar"^3 = 768/48`

∴ r4 = 16

∴ r = 2

Substituting r = 2 (i), we get

a.(23) = 48

∴ a = 6

∴ t10 = ar9

∴ t10 = ar9

= 6(29)

= 3072

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Sequences and Series - Miscellaneous Exercise 2.2 [Page 41]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 2 Sequences and Series
Miscellaneous Exercise 2.2 | Q II. (1) | Page 41

RELATED QUESTIONS

Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


Evaluate `sum_(k=1)^11 (2+3^k )`


The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.


Find the 4th term from the end of the G.P.

\[\frac{2}{27}, \frac{2}{9}, \frac{2}{3}, . . . , 162\]

The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


Find three numbers in G.P. whose sum is 38 and their product is 1728.


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Find the sum of the following series:

0.6 + 0.66 + 0.666 + .... to n terms


The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


For the G.P. if r = − 3 and t6 = 1701, find a.


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


For a G.P. a = 2, r = `-2/3`, find S6


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


Answer the following:

If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


The third term of G.P. is 4. The product of its first 5 terms is ______.


The sum or difference of two G.P.s, is again a G.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×