Advertisements
Advertisements
Question
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
Solution
Let the first term of an A.P is a and its common difference be d.
\[\therefore a_1 + a_2 + a_3 = 21\]
\[ \Rightarrow a + \left( a + d \right) + \left( a + 2d \right) = 21\]
\[ \Rightarrow 3a + 3d = 21 \]
\[ \Rightarrow a + d = 7 . . . (i)\]
\[\text { Now, according to the question }: \]
\[a , a + d - 1 \text { and } a + 2d + 1 \text { are in G . P } . \]
\[ \Rightarrow \left( a + d - 1 \right)^2 = a\left( a + 2d + 1 \right)\]
\[ \Rightarrow \left( 7 + a - a - 1 \right)^2 = a \left[ a + 2\left( 7 - a \right) + 1 \right] \]
\[ \Rightarrow \left( 6 \right)^2 = a\left( 15 - a \right)\]
\[ \Rightarrow 36 = 15a - a^2 \]
\[ \Rightarrow a^2 - 15a + 36 = 0\]
\[ \Rightarrow \left( a - 3 \right)\left( a - 12 \right) = 0\]
\[ \Rightarrow a = 3, 12\]
\[\text { Now, putting a = 2, 12 in equation (i), we get d = 5, - 5, respectively } . \]
\[\text { Thus, for a = 2 and d = 5, the numbers are 2, 7 and 12 } . \]
\[\text { And, for a = 12 and d = - 5, the numbers are 12 , 7 and 2 } . \]
APPEARS IN
RELATED QUESTIONS
The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
Find :
the 8th term of the G.P. 0.3, 0.06, 0.012, ...
If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that a, b, c and d are in G.P.
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Find the sum of the following geometric progression:
4, 2, 1, 1/2 ... to 10 terms.
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
Find the sum of the following geometric series:
\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text { to n terms }\]
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
Let x be the A.M. and y, z be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\] is equal to
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
Check whether the following sequence is G.P. If so, write tn.
7, 14, 21, 28, …
The numbers 3, x, and x + 6 form are in G.P. Find nth term
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
Express the following recurring decimal as a rational number:
`2.3bar(5)`
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"`
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.
If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.