English

Select the correct answer from the given alternative. If for a G.P. t6t3=145854 then r = ? - Mathematics and Statistics

Advertisements
Advertisements

Question

Select the correct answer from the given alternative.

If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?

Options

  • 3

  • 2

  • 1

  • – 1

MCQ

Solution

3

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Sequences and Series - Miscellaneous Exercise 2.1 [Page 41]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 2 Sequences and Series
Miscellaneous Exercise 2.1 | Q I. (3) | Page 41

RELATED QUESTIONS

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.


Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...


Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]


Find the 4th term from the end of the G.P.

\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]


If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that abc and d are in G.P.


Find the sum of the following geometric progression:

2, 6, 18, ... to 7 terms;


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


Find the geometric means of the following pairs of number:

a3b and ab3


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to


In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is 


Check whether the following sequence is G.P. If so, write tn.

2, 6, 18, 54, …


Check whether the following sequence is G.P. If so, write tn.

7, 14, 21, 28, …


Which term of the G.P. 5, 25, 125, 625, … is 510?


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


For a G.P. If t3 = 20 , t6 = 160 , find S7


For a G.P. If t4 = 16, t9 = 512, find S10


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]


Express the following recurring decimal as a rational number:

`2.bar(4)`


Find : `sum_("r" = 1)^oo 4(0.5)^"r"`


Find : `sum_("n" = 1)^oo 0.4^"n"`


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


The sum or difference of two G.P.s, is again a G.P.


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×