Advertisements
Advertisements
Question
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
Solution
\[\text { Here, first term, }a = \frac{1}{3} \]
\[\text { and common ratio } r = \frac{1}{3}\]
\[\text { Let the } n^{th}\text { term be } \frac{1}{19683} . \]
\[ \therefore a_n = \frac{1}{19683}\]
\[ \Rightarrow a r^{n - 1} = \frac{1}{19683}\]
\[ \Rightarrow \left( \frac{1}{3} \right) \left( \frac{1}{3} \right)^{n - 1} = \frac{1}{19683}\]
\[ \Rightarrow \left( \frac{1}{3} \right)^{n - 1} = \frac{3}{\left( 3 \right)^9} = \left( \frac{1}{3} \right)^8 \]
\[ \Rightarrow n - 1 = 8 \]
\[ \Rightarrow n = 9\]
\[\text { Thus, the } 9^{th} \text { term of the given G . P . is } \frac{1}{19683} .\]
APPEARS IN
RELATED QUESTIONS
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c are in G.P., then prove that:
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
Find the geometric means of the following pairs of number:
a3b and ab3
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
If logxa, ax/2 and logb x are in G.P., then write the value of x.
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
Which term of the G.P. 5, 25, 125, 625, … is 510?
If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.
The numbers 3, x, and x + 6 form are in G.P. Find nth term
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
Find `sum_("r" = 1)^"n" (2/3)^"r"`
If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.