English

Which Term of the G.P. : 1 3 , 1 9 , 1 27 . . . is 1 19683 ? - Mathematics

Advertisements
Advertisements

Question

Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]

Solution

\[\text { Here, first term, }a = \frac{1}{3} \]

\[\text { and common ratio } r = \frac{1}{3}\]

\[\text { Let the } n^{th}\text {  term be } \frac{1}{19683} . \]

\[ \therefore a_n = \frac{1}{19683}\]

\[ \Rightarrow a r^{n - 1} = \frac{1}{19683}\]

\[ \Rightarrow \left( \frac{1}{3} \right) \left( \frac{1}{3} \right)^{n - 1} = \frac{1}{19683}\]

\[ \Rightarrow \left( \frac{1}{3} \right)^{n - 1} = \frac{3}{\left( 3 \right)^9} = \left( \frac{1}{3} \right)^8 \]

\[ \Rightarrow n - 1 = 8 \]

\[ \Rightarrow n = 9\]

\[\text { Thus, the } 9^{th} \text { term of the given G . P . is } \frac{1}{19683} .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.1 | Q 6.4 | Page 10

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`


Show that one of the following progression is a G.P. Also, find the common ratio in case:

\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?


The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find the sum of the following geometric progression:

1, −1/2, 1/4, −1/8, ... to 9 terms;


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If a, b, c, d are in G.P., prove that:

(b + c) (b + d) = (c + a) (c + d)


If a, b, c are in G.P., then prove that:

\[\frac{a^2 + ab + b^2}{bc + ca + ab} = \frac{b + a}{c + b}\]

If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


Find the geometric means of the following pairs of number:

a3b and ab3


The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


If logxa, ax/2 and logb x are in G.P., then write the value of x.


If the first term of a G.P. a1a2a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


Mark the correct alternative in the following question: 

Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to 


Check whether the following sequence is G.P. If so, write tn.

1, –5, 25, –125 …


Which term of the G.P. 5, 25, 125, 625, … is 510?


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


The numbers 3, x, and x + 6 form are in G.P. Find nth term


For the following G.P.s, find Sn

0.7, 0.07, 0.007, .....


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


Find: `sum_("r" = 1)^10(3 xx 2^"r")`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`


Find : `sum_("r" = 1)^oo 4(0.5)^"r"`


Find : `sum_("r" = 1)^oo (-1/3)^"r"`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


Answer the following:

In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×