English

Find: ∑r=110(3×2r) - Mathematics and Statistics

Advertisements
Advertisements

Question

Find: `sum_("r" = 1)^10(3 xx 2^"r")`

Sum

Solution

`sum_("r" = 1)^10(3 xx 2^"r") = 3 sum_("r"=1)^10 2"r"`

= 3(2 + 22 + 23 + ... + 210)

Here, 2, 22, 23, ..., 210 are in G.P. with a = 2, r = 2

∴ `sum_("r" = 1)^10(3 xx 2^"r") = 3[(2(2^10 - 1))/(2 -1)]` ....... `[because "S"_"n" = ("a"("r"^"n" -1))/("r" -1)]`

= 6(1024 – 1)

= 6(1023) 

= 6138

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Sequences and Series - Exercise 2.2 [Page 32]

APPEARS IN

RELATED QUESTIONS

The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.


Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


For what values of x, the numbers  `-2/7, x, -7/2` are in G.P?


Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Which term of the G.P. :

\[2, 2\sqrt{2}, 4, . . .\text {  is }128 ?\]


In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.


If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]


Write the product of n geometric means between two numbers a and b

 


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to


The fractional value of 2.357 is 


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×