Advertisements
Advertisements
Question
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
Solution
\[\text { As, } a_p = q\]
\[ \Rightarrow a r^\left( p - 1 \right) = q . . . . . \left( i \right)\]
\[\text { Also, } a_q = p\]
\[ \Rightarrow a r^\left( q - 1 \right) = p . . . . . \left( ii \right)\]
\[\text { Dividing }\left( i \right)\text { by } \left( ii \right), \text { we get }\]
\[\frac{a r^\left( p - 1 \right)}{a r^\left( q - 1 \right)} = \frac{q}{p}\]
\[ \Rightarrow r^\left( p - 1 - q + 1 \right) = \frac{q}{p}\]
\[ \Rightarrow r^\left( p - q \right) = \frac{q}{p}\]
\[ \Rightarrow r = \left( \frac{q}{p} \right)^\frac{1}{\left( p - q \right)} \]
\[\text { Substituting the value of r in } \left( ii \right), \text { we get }\]
\[a \left[ \left( \frac{q}{p} \right)^\frac{1}{\left( p - q \right)} \right]^\left( q - 1 \right) = p\]
\[ \Rightarrow a\left[ \left( \frac{q}{p} \right)^\frac{\left( q - 1 \right)}{\left( p - q \right)} \right] = p\]
\[ \Rightarrow a = p \times \left( \frac{p}{q} \right)^\frac{\left( q - 1 \right)}{\left( p - q \right)} \]
\[ \Rightarrow a = p \left( \frac{p}{q} \right)^\frac{\left( q - 1 \right)}{\left( p - q \right)} \]
\[\text { Now, } \]
\[ a_\left( p + q \right) = a r^\left( p + q - 1 \right) \]
\[ = p \left( \frac{p}{q} \right)^\frac{\left( q - 1 \right)}{\left( p - q \right)} \times \left[ \left( \frac{q}{p} \right)^\frac{1}{\left( p - q \right)} \right]^\left( p + q - 1 \right) \]
\[ = p \left( \frac{p}{q} \right)^\frac{\left( q - 1 \right)}{\left( p - q \right)} \times \left( \frac{q}{p} \right)^\frac{\left( p + q - 1 \right)}{\left( p - q \right)} \]
\[ = p \left( \frac{q}{p} \right)^\frac{- \left( q - 1 \right)}{\left( p - q \right)} \times \left( \frac{q}{p} \right)^\frac{\left( p + q - 1 \right)}{\left( p - q \right)} \]
\[ = p \times \left( \frac{q}{p} \right)^\frac{- \left( q - 1 \right)}{\left( p - q \right)} + \frac{\left( p + q - 1 \right)}{\left( p - q \right)} \]
\[ = p \times \left( \frac{q}{p} \right)^\frac{- q + 1 + p + q - 1}{\left( p - q \right)} \]
\[ = p \times \left( \frac{q}{p} \right)^\frac{p}{\left( p - q \right)} \]
\[ = \frac{p \times q^\frac{p}{\left( p - q \right)}}{p^\frac{p}{\left( p - q \right)}}\]
\[ = \frac{q^\frac{p}{\left( p - q \right)}}{p^\frac{p}{\left( p - q \right)} - 1}\]
\[ = \frac{q^\frac{p}{\left( p - q \right)}}{p^\frac{p - p + q}{\left( p - q \right)}}\]
\[ = \frac{q^\frac{p}{\left( p - q \right)}}{p^\frac{q}{\left( p - q \right)}}\]
\[ = \frac{q^{p \times \frac{1}{\left( p - q \right)}}}{p^{q \times \frac{1}{\left( p - q \right)}}}\]
\[ = \left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\]
APPEARS IN
RELATED QUESTIONS
Given a G.P. with a = 729 and 7th term 64, determine S7.
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Find the 4th term from the end of the G.P.
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
Find three numbers in G.P. whose sum is 38 and their product is 1728.
Find the sum of the following geometric series:
`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
Find the geometric means of the following pairs of number:
−8 and −2
The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For a G.P. if S5 = 1023 , r = 4, Find a
For a G.P. If t4 = 16, t9 = 512, find S10
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.